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Abstract

Anemia affects a third of the world’s population and contributes to increased morbidity and 

mortality, decreased work productivity, and impaired neurological development. Understanding 

anemia’s varied and complex etiology is crucial for developing effective interventions that address 

the context-specific causes of anemia and for monitoring anemia control programs. We outline 

definitions and classifications of anemia, describe the biological mechanisms through which 

anemia develops, and review the variety of conditions that contribute to anemia development. We 

emphasize the risk factors most prevalent in low- and middle-income countries, including 

nutritional deficiencies, infection/inflammation, and genetic hemoglobin disorders. Recent work 

has furthered our understanding of anemia’s complex etiology, including the proportion of anemia 

caused by iron deficiency (ID) and the role of inflammation and infection. Accumulating evidence 

indicates that the proportion of anemia due to ID differs by population group, geographical setting, 

infectious disease burden, and the prevalence of other anemia causes. Further research is needed to 

explore the role of additional nutritional deficiencies, the contribution of infectious and chronic 

disease, as well as the importance of genetic hemoglobin disorders in certain populations.
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Introduction

Anemia—a condition in which hemoglobin (Hb) concentration and/or red blood cell (RBC) 

numbers are lower than normal and insufficient to meet an individual’s physiological needs1

—affects roughly one-third of the world’s population.2 Anemia is associated with increased 

morbidity and mortality in women and children,3,4 poor birth outcomes,5,6 decreased work 

productivity in adults,7 and impaired cognitive and behavioral development in children.8 

Preschool children (PSC) and women of reproductive age (WRA) are particularly affected.

Establishing appropriate Hb thresholds to define anemia is essential for ensuring that anemia 

is correctly identified, and its negative effects prevented. As important, understanding the 

diverse and complex etiology of anemia is crucial for developing appropriate interventions 

that address the context-specific causes of anemia and for monitoring the success of anemia 

control programs. To that end, the primary aims of this paper are to outline definitions and 

classifications of anemia; describe the biological mechanisms through which anemia 

develops; review the variety of factors and conditions that contribute to anemia development, 

emphasizing those most prevalent in low- and middle-income countries (LMICs); and 

identify research needs. Although our primary focus is on anemia and its etiology at a 

population level, the information we present on definitions and classifications of anemia, as 

well as its etiology, is relevant to individual-level assessment by clinicians.

Materials and methods

We reviewed the peer-reviewed literature on definitions and classifications of anemia, global 

magnitude and epidemiology of anemia, and causes of anemia, including their biological 

mechanisms and public health significance. We identified references through PubMed 

searches on relevant search terms (see below) and the “snowball” method in which 

references of references are identified. We also consulted gray literature, particularly 

documents relevant to defining anemia and nutritional status published by international 

organizations. To provide estimates of the global magnitude of anemia and to elucidate the 

etiology of anemia, we used three principal sources: (1) recent analyses by WHO on global 

anemia prevalence between 1995 and 2016 using population-representative data on PSC and 

WRA from 257 sources representing 107 countries;9,10 (2) a recent global analysis of 

anemia burden between 1990 and 2010 in 20 age groups and both sexes from 187 countries 

that also performed cause-specific attribution to 17 conditions from the Global Burden of 

Diseases, Injuries and Risk Factors 2010 Study;2 and (3) recent analyses from the 

Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) 

project, a large-scale collaborative study to examine the factors associated with anemia in 

29,000 PSC (6−59 months of age) from 16 population-based surveys and 27,000 

nonpregnant WRA (15−49 years of age) from 10 population-based surveys representing 

countries in all six WHO geographic regions.11
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Search terms

Anemia AND: causes, classification, etiology, risk factors, assessment, iron deficiency, 

vitamin A deficiency, folate deficiency, B12 deficiency, riboflavin deficiency, malaria, 

infection, infectious disease, schistosomiasis, hookworm, intestinal helminths, HIV, 

tuberculosis, obesity, overweight, undernutrition, underweight, stunting, wasting, child 

development, motor development, cognitive development, birth outcomes, birth weight, 

premature birth, growth, mortality, work productivity, poverty, education; nutritional 

anemias; anemia of inflammation; anemia of chronic disease; thalassemia, α-thalassemia, β-

thalassemia; sickle cell disease; sickle cell disorders; hemoglobinopathies; hemoglobin 

disorders; hepcidin; iron deficiency anemia.

Defining anemia

Anemia is alternately defined as a reduced absolute number of circulating RBCs12 or a 

condition in which the number of RBCs (and subsequently their oxygen-carrying capacity) 

is insufficient to meet physiologic needs.1 Though most commonly diagnosed by a low Hb 

concentration or a low hematocrit,12 anemia can also be diagnosed using RBC count, mean 

corpuscular volume, blood reticulocyte count, blood film analysis, or Hb electrophoresis.13 

At the population level and in clinical practice, Hb concentration is the most common 

hematological assessment method used14 and the most common indicator used to define 

anemia. The critical role of Hb to carry oxygen to the tissues explains the most common 

clinical symptoms of anemia, which include fatigue, shortness of breath, bounding pulses or 

palpitations, and conjunctival and palmar pallor.15 Clinical signs16 and medical history are 

used to diagnose anemia when hematological data are unavailable, but they are limited in 

their ability to detect anemia.17 Severe anemia (defined by WHO as Hb <70 g/L in children 

under 5 years of age and Hb <80 g/L in all other age groups,1 though other definitions, 

including Hb <50 g/L, are used) is of particular importance clinically, as it can result in 

high-output heart failure and death.12

Defining an abnormally low Hb concentration requires understanding how Hb naturally 

varies by age, sex, pregnancy status, genetic and environmental factors, and, potentially, 

race. Hb varies with age, most dramatically in the first months of life (Fig. 1).18 In the 

newborn, normal Hb concentrations are between 17 and 21 g/L, their highest point during 

life.18,19 Hb concentration then decreases through the first 2−3 months of life before 

increasing again in childhood,18,20 and then levels off throughout adulthood before declining 

again in older age.21 Sex differences in Hb concentrations begin in puberty (because of the 

effect of menstruation on iron stores and, subsequently, anemia) and continue throughout the 

reproductive years.22,23 During pregnancy, because of the expansion of blood volume and 

consequent dilution effect, Hb concentration naturally declines during the first and second 

trimesters, rising gradually again in the third trimester.24 Apart from physiological factors, 

behavior and environmental conditions, such as altitude and smoking, can also affect Hb 

concentrations.1

The WHO Hb cutoffs for anemia (Table 1) are widely applied globally and are sex, age, and 

pregnancy specific.1 These cutoffs were first established in 1968 by a nutritional anemia 

study group at WHO using statistical cutoffs rather than thresholds linked to meaningful 

Chaparro and Suchdev Page 3

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



health outcomes.25 Hb cutoffs were modified slightly since then to allow for additional age 

divisions among children, adjustment for children in the 5−11 age group based on data of 

noniron-deficient children from the United States, and creation of the categories of “mild,” 

“moderate,” and “severe” anemia.26,27 Cutoffs were also supported by findings among 

participants of the Second National Health and Nutrition Examination Survey (NHANES II) 

who were not iron deficient.14 The need for separate cutoffs based on ethnicity/race has been 

proposed (e.g., individuals of African descent have lower Hb concentrations than do 

Caucasian populations, at least partially due to the greater prevalence of genetic Hb 

disorders in persons of African descent), as have revisions to the cutoffs for particular age 

groups (e.g., very young infants).28–32

Global magnitude of anemia

Approximately one-third of the world’s population (32.9%) was estimated to suffer from 

anemia in 2010.2 The population groups most vulnerable to anemia include (1) children 

under 5 years of age (42% with anemia in 2016), particularly infants and children under 2 

years of age; (2) WRA (39% with anemia in 2016); and (3) pregnant women (46% with 

anemia in 2016).33,34 Females were consistently at greater risk of anemia than men across 

almost all geographic regions and in most age groups.2 Other at-risk groups include the 

elderly, as the prevalence of anemia among adults over 50 years of age rises with advancing 

age,35 though data are limited.

The prevalence of anemia also varies by geographic region. Sub-Saharan Africa, South Asia, 

the Caribbean, and Oceania had the highest anemia prevalence across all age groups and 

both sexes in 2010.2 At the country level, anemia among WRA and children under 5 years of 

age is a moderate-to-severe public health problem (20% or greater as defined by WHO) in 

the majority of WHO member states.9,10

Progress on decreasing anemia has been overall slow and uneven. For all age groups and 

both sexes, anemia is estimated to have decreased roughly seven percentage points between 

1990 and 2016, from 40% to 33%.2 The WHO Global Nutrition Target 2025 on anemia aims 

to reduce anemia in WRA by 50% by 2025.36 Based on a global prevalence of 29–38% 

anemia among WRA (nonpregnant and pregnant, respectively) as of 2011, a reduction of 

1.8–2.4 percentage points per year would be required to meet this target.

Pathophysiology of anemia: consequences for development, growth, birth 

outcomes, and work productivity

Anemia has significant consequences for human health, as well as for social and economic 

development. In 2010, anemia accounted for 68.4 million years of life lived with disability, 

or 9% of the total global disability burden from all conditions.2 Anemia has been associated 

with negative health and development outcomes, including neonatal and perinatal mortality, 

low birth weight,37 premature birth,5,38 and delayed child development.39

The negative effects on health and development outcomes from anemia arise from the 

impacts of decreased oxygen delivery to tissues (in which multiple organ systems may be 
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affected), as well as effects related to the underlying causes of anemia, which are difficult to 

disentangle. For example, in iron deficiency anemia (IDA), decreased iron availability has 

well-established negative effects on brain development and functioning even prior to anemia 

development.40

Etiology of anemia: conceptual models, biological mechanisms, and 

classifications

At a biological level, anemia develops because of an imbalance in erythrocyte loss relative to 

production; this can be due to ineffective or deficient erythropoiesis (e.g., from nutritional 

deficiencies, inflammation, or genetic Hb disorders) and/or excessive loss of erythrocytes 

(due to hemolysis, blood loss, or both). Anemia is frequently classified based on the 

biological mechanism of causation (e.g., IDA, hemolytic anemia, and anemia of 

inflammation (AI)) and/or the RBC morphology. Table 2 displays a partial list of several 

common anemias and the biological mechanisms through which they develop and RBC 

parameters that characterize their presentation and distinguish them from each other.41 Most 

anemias have a characteristic RBC appearance, which can provide insights to the diagnosis 

of anemia. However, as Table 2 displays, multiple factors can cause a similar type of RBC 

morphology.41 Furthermore, as anemia may have multiple causes, even in the same 

individual, hematological manifestations of a particular cause can be masked by another. For 

example, the hallmark of anemia caused by vitamin B12 or folate deficiencies is macrocytic 

anemia. Concomitant ID, which causes microcytosis, may mask entirely the effects of the 

B12 or folate deficiency. Although indices exist in clinical practice for distinguishing anemia 

etiology based on RBC parameters (e.g., IDA versus β-thalassemia—both cause 

hypochromia and microcytosis), their reliability for discriminating between causes varies.
42,43

Figure 2 is a conceptual model of the etiology of anemia identifying how distal factors 

contribute to more proximate determinants of anemia, such as food insecurity, clean water, 

and sanitation, and, ultimately, the most immediate causes of anemia (e.g., nutritional 

deficiencies, disease, inflammation, and Hb disorders).13,44,45 Many of these determinants 

are interrelated. Poverty, for example, is a major determinant of health and nutrition, and 

poor socioeconomic position is linked to a greater risk of anemia among women and 

children.13,46 Similarly, low education level is also associated with a greater risk of anemia.
13 A recent analysis of 53 demographic and health surveys with Hb data found that anemia 

among PSC (affecting 70% of the PSC population studied) was strongly associated with 

maternal anemia, household wealth, maternal education, and low birth weight.47

It is important to note that the primary causes of mild and moderate anemia tend to differ 

from the principal causes of severe anemia. Though there are limited studies on the etiology 

of severe anemia,48 malaria is frequently identified as a principal cause of severe anemia, 

particularly in African children. In the BRINDA project, the most consistent predictors of 

severe anemia in population-based surveys of PSC were malaria, poor sanitation, 

underweight, and inflammation (in African countries only); stunting, vitamin A deficiency 

(VAD), and rural location were also significant determinants in high/very high infection 
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countries.49 In a study of Malawian PSC, factors associated with severe anemia included 

malaria, bacteremia, hookworm infection, HIV infection, glucose-6-phosphate 

dehydrogenase (G6PD) deficiency, and vitamin A (VA) and B12 deficiencies.48 In this 

population, iron deficiency (ID) was protective of severe anemia, likely due to the 

relationship between iron and infection. In Kenyan PSC, severe anemia was associated with 

malaria, inflammation, and stunting, while predictors of more moderate forms of anemia 

were ID, malaria, and α-thalassemia.50 Severe anemia is also a comorbidity of severe acute 

malnutrition (SAM); for example, in India, of hospital-based children with SAM, 67% also 

had severe anemia.51

As identified in Figure 2, and reflected in global analyses of anemia burden between 1990 

and 2010, the most proximal risk factors for anemia include nutritional deficiencies, disease/

infection, and genetic Hb disorders.52 These conditions and several others, which are also 

prevalent causes of anemia in LMIC, will be discussed in more detail below.

Nutritional anemias: iron, vitamins A and B12, folate, and riboflavin

Nutritional anemias result when concentrations of hematopoietic nutrients—those involved 

in RBC production or maintenance—are insufficient to meet those demands.13 Causes of 

nutrient deficiency include inadequate dietary intake, increased nutrient losses (e.g., blood 

loss from parasites, hemorrhage associated with childbirth, or heavy menstrual losses), 

impaired absorption (e.g., lack of intrinsic factor to aid vitamin B12 absorption, high intake 

of phytate, or Helicobacter pylori infection that impair iron absorption), or altered nutrient 

metabolism (e.g., VA or riboflavin deficiency affecting mobilization of iron stores). While 

nutrient supplementation is a common preventive and treatment strategy for nutritional 

anemias—for example, iron supplementation for the prevention of IDA—the bioavailability 

and thus absorption from different nutrient supplement preparations can vary, potentially 

limiting their impact.53

ID is considered the most common nutritional deficiency leading to anemia, though other 

nutritional deficiencies can also cause anemia, including deficiencies of vitamins A, B12, 

B6, C, D, and E, folate, riboflavin, copper, and zinc.54 Several of these nutrients—vitamins 

A, B6, and B12, folic acid, and riboflavin—are needed for the normal production of RBCs; 

other nutrients, such as vitamins C and E, may protect RBCs through their antioxidant 

function.55 Trace elements, such as copper and zinc, are found in the structures of enzymes 

that act on iron metabolism (e.g., copper and ceruloplasmin).56 Copper may also contribute 

to anemia development through reductions in erythropoietin (EPO) and antioxidant enzymes 

that require copper, thus increasing oxidative stress and reducing RBC life span;57 the 

mechanisms through which zinc deficiency is associated with anemia are not as well 

characterized.57 The extent to which each of these deficiencies contributes to the global 

anemia burden is still a subject of investigation. While some of these nutrient deficiencies 

are rare and may contribute little to the burden of anemia globally, deficiencies in multiple 

micronutrients likely have a synergistic effect on anemia development.58
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Iron deficiency

ID develops when dietary iron intake cannot meet iron needs over a period of time, 

especially during periods of life when iron requirements are particularly high (e.g., during 

periods of rapid growth and development, such as infancy and pregnancy) or when iron 

losses exceed iron intake. ID typically evolves in three stages: storage iron depletion, iron-

deficient erythropoiesis, and IDA (defined as concomitant ID plus anemia).59 The WHO 

recommends assessing iron status using serum ferritin or soluble transferrin receptor (sTfR).
60,61 Serum ferritin, a measure of body storage iron and a sensitive measure of ID, is 

elevated by the acute phase response; sTfR levels when high indicate tissue ID, but sTfR 

may also be affected by inflammation and other causes of erythropoiesis.60,61 Because of the 

effect of inflammation on many biomarkers of iron status, acute phase proteins (e.g., C-

reactive protein (CRP) and alpha-1-acid glycoprotein (AGP)) should be assessed when 

possible.60 A fuller review of iron status indicators, outside the scope of the paper here, is 

available elsewhere.61

Estimates from the late 1990s placed the number of individuals affected by ID at 2 billion, 

and ID has long been assumed to contribute to approximately 50% of anemia cases globally.
62,63 A recent systematic analysis of global anemia data that calculated cause-specific 

attribution for 17 conditions related to anemia ranked ID as the most common cause in 

almost all global regions examined.2 The WHO used the change in Hb concentration from 

iron supplementation studies to estimate the “proportion of all anemia amenable to iron” as 

50% of anemia among nonpregnant and pregnant women, and 42% of anemia in children.9 

Recent analyses from the BRINDA project indicated that along with age and malaria, ID 

was one of the factors most consistently associated with anemia, though the proportion of 

anemic children and women with ID varied by infectious disease burden.46,49 Another study 

that assessed the role of ID in anemia burden among PSC and nonpregnant WRA, across a 

range of countries with varying rankings on the Human Development Index, showed that 

between approximately a quarter to a third of anemia among PSC and WRA was associated 

with ID.64 In countries where the prevalence of anemia was greater than 40% and in 

countries where inflammation levels were high, ID played a much smaller role.64 Thus, 

while ID remains a primary cause in many settings, the proportion of anemic individuals 

with ID varies by contextual factors, and poor iron nutrition cannot be assumed to be the 

primary cause in all cases. Yet, iron interventions (e.g., supplementation, fortification, and 

dietary interventions) are central to most anemia control programs, and WHO currently has 

17 guidelines on iron supplementation.65 Given the complex etiology of anemia, the extent 

to which ID accounts for the anemia burden continues to be investigated.

Vitamin A deficiency

VAD is prevalent in many LMICs, particularly among PSC, pregnant women, and WRA. In 

2005, the WHO estimated that 190 million PSC and 9.1 million pregnant women from 

regions at risk of VAD were VA deficient (based on serum retinol concentrations), which 

represents a third of PSC and 15% of pregnant women from these countries.66

VAD and anemia have been observed to occur in the same populations for decades, and 

significant correlations between VA status biomarkers and Hb have been described in 

Chaparro and Suchdev Page 7

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multiple countries and populations including preschool and school-age children, adolescents, 

and adults.67 VA supplementation has been shown to increase Hb concentrations, 

hematocrit, and some iron status indices, even when administered in the absence of iron 

supplements.55,67 VAD is thought to cause anemia through multiple mechanisms, including 

the role of retinoids in erythropoiesis, VA’s importance for immune function, as well as 

VA’s well-established role in iron metabolism.67 In contrast to IDA, which is marked by a 

depletion of iron stores, anemia due to VAD is marked by an increase in iron stores in the 

liver and spleen and increased serum ferritin concentrations.68 The anemia of VAD has 

alternatively been described as hypochromic or microcytic and hypochromic, but other 

factors—including other nutritional deficiencies and infections—occurring simultaneously 

may cause inconsistencies in RBC parameters.67 BRINDA analyses showed that among 

PSC, VAD was associated with anemia in close to half of the surveys (5/12) and across 

levels of infectious disease burden.49 Among WRA in the BRINDA project where ID and 

VAD were both assessed, VAD and ID were associated with anemia in all surveys (5/5 

surveys) in both high- and low-infection burden groups.46 Estimates as to how much anemia 

would be reduced by addressing VAD warrants additional research. In addition, like iron 

status indices, VA biomarkers are affected by inflammation, thus complicating the 

assessment of anemia due to VAD in settings where infectious disease is prevalent.69

Deficiencies of B vitamins (riboflavin, B12, and folate)

Several B vitamins are involved in Hb synthesis or iron metabolism, including riboflavin 

(B2), pyridoxine (B6), cobalamin (B12), and folate. Deficiencies of these nutrients have 

been associated with anemia; however, the extent to which they contribute to the global 

burden of anemia varies and in some cases is unclear. Vitamin B6 deficiency is rare55 and 

will not be addressed here.

Both vitamin B12 (cobalamin) and folate deficiency can lead to macrocytic anemia. 

Deficiencies of these nutrients affect DNA synthesis and cell division in the bone marrow 

(megaloblastic changes), such as hypersegmented neutrophils on the peripheral blood smear.
70 Folate deficiency can also lead to decreased erythrocyte life span. Vitamin B12 deficiency 

in LMIC most commonly results from low dietary intake of the nutrient. Its bioavailable 

forms are only found in animal-source foods; but vitamin B12 deficiency can also result 

from malabsorption, particularly in the elderly among whom gastric atrophy is common,71 

in cases of pernicious anemia, an autoimmune disease in which autoantibodies are formed 

against intrinsic factor essential for B12 absorption, and in bacterial and parasitic 

coinfections.13,72 Folate deficiency tends to be more common in populations relying on 

unfortif ied wheat or rice as a staple food and that consume low amounts of legumes and 

green leafy vegetables.71 Pregnant women, preterm infants, and individuals living in 

malaria-endemic regions (as folate is needed for malarial parasite growth)73 are at high risk 

of folate deficiency.55 For women during pregnancy, folate demands increase; and starting 

pregnancy with poor folate status can lead to megaloblastic anemia, which is further 

exacerbated by the additional folate needs for lactation.13

Data on the prevalence of vitamin B12 and folate deficiencies at the national level are 

limited.74 Out of seven countries with national data on B12 status (measured using different 
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indicators, including serum vitamin B12, homocysteine, or methylmalonic acid) primarily 

from the Americas and Europe, five had levels of deficiency greater than 5% (the level above 

which the authors of the study considered B12 deficiency a problem of public health 

significance).74 In the BRINDA project, among the 10 surveys of WRA, four measured 

vitamin B12 status;46 among these, vitamin B12 deficiency was very low (<3%) in Mexico 

and the United States, but higher (approximately 15%) in Côte d’Ivoire and Colombia.46 In 

the global review of vitamin B12 and folate status by McLean et al., folate deficiency was 

estimated to be of public health significance (>5% deficient) in six out of eight countries 

with national data, and particularly affected groups included PSC in Venezuela (33.8%), 

pregnant women in Costa Rica (48.8%) and Venezuela (25.5%), and the elderly in the 

United Kingdom (15.0%).74 In the BRINDA project surveys of WRA, the prevalence of 

folate deficiency was >80% in both Côte d’Ivoire and Georgia, but <3% in Mexico and the 

United States.46

The contribution of B12 and folate deficiencies to the global prevalence of anemia is 

unknown though data suggest that it may be minimal. One review indicated that a high 

prevalence of B12 or folate deficiency did not necessarily correlate with a high prevalence of 

anemia except possibly for women (and their infants and children) consuming vegetarian 

diets who were B12 deficient.43 Supporting this, the BRINDA project showed that vitamin 

B12 and folate deficiencies were not significantly associated with anemia, though sample 

sizes for studies that measured these deficiencies were limited.46

Riboflavin’s role as a cofactor in redox reactions is an important part of iron metabolism, 

and riboflavin deficiency in animals can decrease iron mobilization from stores, decrease 

iron absorption, increase iron losses,75 and impair globin production.55 Riboflavin 

deficiency is thought to be common in many populations75 and has been documented in 

pregnant and lactating women, infants, school-age children, adolescent girls, and the elderly 

in both high-income and LMICs, especially where consumption of milk/dairy products and 

meat (primary riboflavin sources) is low.75 Whether riboflavin deficiency is a primary 

contributing factor to anemia in humans remains unclear. Riboflavin supplements provided 

along with iron supplements have been shown to have a greater effect on Hb concentration 

than iron supplements alone among children and pregnant women in some studies, though 

not all.76 In a longitudinal study of Chinese adults, inadequate riboflavin intake was 

associated with anemia at baseline and increased risk of anemia during a 5-year follow-up 

period.77 However, in schoolchildren in Côte d’Ivoire, riboflavin deficiency was not 

associated with Hb concentration or anemia despite a prevalence of riboflavin deficiency of 

65%, though it was associated with ID.76

Other conditions associated with anemia: undernutrition and overweight/obesity

Stunting, wasting, and underweight have been associated with anemia in some studies,
49,78,79 but not all.80 In analyses from the BRINDA project, stunting, underweight, and 

wasting were associated with anemia in PSC in more than half of the surveys (9/15, 10/15, 

and 5/15, respectively) for which these variables were available.49 These manifestations of 

poor nutritional status are associated with anemia due to similar factors (though not 

constituting a causal relationship), including poor maternal nutrition, inadequate home and 

Chaparro and Suchdev Page 9

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



community environments, inadequate complementary feeding practices leading to poor 

micronutrient and animal-source food intake, contaminated water and poor sanitation, 

suboptimal breastfeeding practices, and clinical and subclinical infections.81

While more related to ID than anemia per se, overweight and obese individuals have an 

increased risk for ID, as data from multiple countries show.82 The primary link between 

these conditions is thought to be through hepcidin, a peptide hormone produced 

predominantly by the liver and responsible for iron homeostasis, and which is elevated in the 

presence of inflammation.83 The chronic subclinical inflammation present in overweight and 

obese individuals increases hepcidin levels, resulting in reduced iron absorption.82 However, 

Hb concentrations tend to be within the normal range.82,83

Anemia of inflammation and infection, and primary diseases associated 

with anemia globally

Many diseases are associated with anemia through multiple mechanisms, including disease-

specific effects on blood loss, hemolysis or erythropoiesis, and through the effects of 

inflammation on iron metabolism. The presence of an inappropriately low reticulocyte count 

for the degree of anemia is used clinically to indicate conditions due to nutritional 

deficiencies, decreased erythropoietin levels, aplastic anemia, or inherited bone marrow 

failure syndromes.70 In global analyses of anemia burden between 1990 and 2010, 

hookworm, schistosomiasis, and malaria constituted three primary causes of anemia.2 

Below, we describe AI as well as the specific mechanisms for several predominant diseases 

associated with anemia and prevalent in LMICs.

Anemia of inflammation

Anemia of chronic disease or AI is generally normocytic with a low reticulocyte count and 

characterized to be mild-to-moderate (Hb concentrations 8−10 g/L).84 In AI, 

proinflammatory cytokines released in the host defense response to infection (IL-6 in 

particular, but other cytokines are also involved) alter iron metabolism so that iron is 

sequestered within cells of the reticuloendothelial system (liver and spleen) and intestinal 

enterocytes, and RBC production and life span are reduced.84–86 The effects on iron 

metabolism are mediated by hepcidin such that inflammatory cytokines increase its 

production, which downregulates the expression of ferroportin in intestinal enterocytes, 

macrophages, and hepatocytes, thus blocking iron absorption and mobilization of iron from 

stores into circulation.82,85,86 Inflammatory cytokines also contribute to shortened RBC life 

span (potentially by activating macrophages), as well as impairing the production and 

function of EPO and inhibiting normal erythroid progenitor cell proliferation and 

differentiation.84,86,87

AI has been called the second most common cause of anemia after IDA,84,86 and while 

disease/infections are the top causes of anemia,2 the proportion of global anemia due to 

inflammation is not known, and likely varies by setting and disease burden. Among PSC in 

the BRINDA project, inflammation (as assessed through the measurement of CRP and/or 

AGP) was generally associated with anemia across countries (9/10 surveys). However, in a 

Chaparro and Suchdev Page 10

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pooled analysis of countries by infection burden (reflecting sanitation, drinking water 

quality, and prevalence of malaria, diarrhea, or schistosomiasis), inflammation was 

associated with anemia in the high- and very high–infection burden groups, but not in the 

low- and moderate-infection groups. Among anemic PSC in low-, moderate-, high-, and 

very high-infection burden countries, 9.1%, 13.7%, 37.4%, and 70.3%, respectively, also had 

inflammation (any level).49 Thus, in countries with higher infectious disease burden, the role 

of inflammation is likely larger than in countries with lower infectious disease burden. 

Among WRA, inflammation was significantly associated with anemia in countries with high 

and low (but not moderate) infectious disease burden; the odds of anemia among WRA with 

inflammation were 90% and 50% more than the odds among WRA without inflammation in 

high- and low-infection countries, respectively. In the elderly, roughly 10−32% of anemia is 

thought to be due to inflammation, as circulating IL-6 levels rise with increasing age, though 

there are multiple other causes of anemia—including ID and other pathologies—that 

become more common with advancing age.88

Soil-transmitted helminth infections

Hookworm (Necator americanus and Ancylostoma duodenale) is the primary soil-

transmitted helminth associated with anemia. Hookworm attaches to and feeds from the 

intestinal mucosa causing blood (and iron) loss and, depending on underlying iron status as 

well as the presence of other risk factors, can lead to IDA. Hookworms are common in sub-

Saharan Africa and Southeast Asia, particularly in areas with poverty, poor water, sanitation, 

hygiene, and infrastructure, causing an estimated 576−740 million infections.89 The severity 

of blood loss and subsequent anemia risk from hookworm infection is determined by several 

factors: (1) the intensity of infection (e.g., the number of hookworms an individual harbors), 

(2) the species of hookworm, and (3) whether there is coinfection with multiple parasites. 

Moderate- and heavy-intensity hookworm infections are associated with lower Hb in 

schoolchildren, while in adults, any level of infection is associated with lower Hb.90 

Children with poor iron status to begin with, however, may still be negatively affected by 

even light hookworm infections.90 A. duodenale infection is associated with a greater risk of 

ID and anemia because of a fivefold greater blood loss, as compared with N. americanus.91 

However, the two species overlap geographically and both are endemic to many areas.91 

Coinfection with multiple parasites, such as Schistosoma sp., Ascaris lumbricoides 
(roundworm), Trichuris trichiura (whipworm), or Plasmodium, has been shown to have an 

additive effect on anemia risk, with a greater effect than would be expected if these species 

had independent effects on anemia.79,92,93 Antihelminthic treatment—particularly 

albendazole, and albendazole administered with praziquantel—has beneficial effects on Hb.
90

In a systematic analysis that ranked the causes of global anemia burden in 2010 by 

prevalence, hookworm infection was ranked as the third and fourth most prevalent causes 

among males and females, respectively, though anemia due to hookworm decreased between 

1990 and 2010, particularly for males.2 Anemia due to hookworm infection was a 

predominant cause of anemia in East Asia and Oceania.2 Hookworm infections tend to be 

less common among PSC (e.g., <2.5 years old) and may not contribute significantly to 

anemia among this most vulnerable group.94 However, in a study of causes of severe anemia 
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in Malawian children, hookworm infections were more common and more intense in 

children with severe anemia, and three-fourths of infected children were under 2 years of age 

(and thus would not be the focus of current treatment regimens).48 The authors speculated 

that younger children might be more vulnerable to severe hematologic complications from 

heavy hookworm infections.

Schistosomiasis

Schistosomiasis is a parasitic disease carried by freshwater snails infected with one of five 

varieties of the Schistosoma parasite and primarily occurs in sub-Saharan Africa. It affects 

an estimated 240 million people in up to 78 countries and reaches peak intensity and 

prevalence in 10−15-year-olds.95,96 The exact mechanisms of schistosomiasis-induced 

anemia are not well understood, and the relationship may also depend on the species of 

Schistosoma parasite causing the infection. Data are most consistent for a causal relationship 

between S. japonicum and anemia, though anemia has been associated with the other two 

primary species—S. haematobium and S. mansoni—as well.96 Schistosomiasis, similarly to 

hookworm, has been shown to lead to blood loss, particularly if the intensity of infection is 

high, which can contribute to IDA.96 In fact, Schistosomiasis is linked to cognitive 

impairment, which may be at least in part due to the resulting ID.96 Schistosome infection 

may also contribute to anemia through splenic sequestration of erythrocytes, deceased RBC 

life span, autoimmune hemolysis, or AI.96 Schistosomiasis is a primary cause of anemia in 

sub-Saharan Africa, particularly among females.2 In addition, between 1990 and 2010, 

schistosomiasis as a cause of anemia increased for both sexes but slightly more among 

females.

Malaria

Malaria caused by Plasmodium parasites can cause severe anemia, in addition to other 

complications, including death. P. falciparum is the most prevalent in Africa and responsible 

for the most malaria-related deaths, and P. vivax is predominant outside of sub-Saharan 

Africa. Nearly half of the world’s population is at risk of malaria, though the WHO African 

region bears a disproportionately high burden of malaria, accounting for 90% of malaria 

cases and 92% of malaria deaths (as of 2015).97 Individuals at increased risk of contracting 

malaria and developing severe disease include infants, PSC, and pregnant women; more than 

two-thirds of malaria deaths occur among children under 5 years of age.97

Malaria commonly exists in areas where ID is also present; ID may protect against severe 

malaria in humans,98 and the relationship between iron and malaria is complex. The parasite 

requires iron for growth, and malaria significantly disturbs iron metabolism and distribution 

in multiple ways, including through hemolysis, the release of heme, defective erythropoiesis, 

increased iron in macrophages, and decreased iron absorption.98 The mechanism for 

malaria-related anemia is multifactorial, including increased hemolysis of parasitized RBCs, 

but more importantly, increased destruction of nonparasitized RBCs, which is the primary 

contributor to anemia development in malaria.99 Decreased RBC production (suppressed 

erythropoiesis) during and for days or weeks after acute malaria also contributes to anemia,
13 as do increased red cell clearance and shortened erythrocyte survival.99 Blood loss is not a 

cause of anemia due to malaria. Hepcidin is upregulated in malaria infection, which also 
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likely contributes to anemia.98 Malaria control in endemic areas can reduce anemia and 

severe anemia among children under 5 by 27% and 60%, respectively.100

Malaria is one of the primary causes of anemia globally2 and is a primary cause of severe 

anemia. Malaria is an even more common cause of anemia in sub-Saharan Africa, 

particularly West sub-Saharan Africa, where malaria accounted for 25% of anemia 

prevalence.2 Among PSC analyzed in the BRINDA project, malaria was consistently 

associated with anemia in all the surveys conducted in endemic areas (5/5).49

HIV

Anemia is one of the most common hematological abnormalities among individuals infected 

with HIV; it is typically characterized as a normochromic and normocytic anemia with a low 

reticulocyte count, normal iron stores, and an impaired EPO response.101 Anemia prevalence 

in HIV-positive individuals increases with advancing progression of the disease and is 

thought to result from several factors, both indirectly and directly related to the virus. HIV 

infection causes a chronic acute phase response, elevated hepcidin and AI, and altered iron 

metabolism.101,102 Opportunistic infections common among HIV-positive patients can also 

lead to anemia (e.g., malaria and hookworm) as do nutritional deficiencies resulting from the 

virus.101 The HIV virus also appears to have direct effects on anemia by affecting 

hematopoietic progenitor cells and decreasing responsiveness to EPO.101 Antiretrovirals 

have been shown to reduce the incidence of anemia and increase Hb levels.101,102 Finally, 

anemia among HIV patients is a predictor of the progression to AIDS, as the degree of 

anemia is correlated with disease progression101 and is independently associated with 

mortality.103

Tuberculosis

Anemia is common among tuberculosis (TB) patients and may be more common among 

those who are coinfected with TB and HIV.104 In one study from Malawi, more than three-

quarters (77%) of TB patients without HIV were anemic, while 88% of TB/HIV coinfected 

patients were anemic.105 In Indonesia, 60% of malnourished TB patients were anemic,106 

while in Uganda, 71% of TB/HIV coinfected patients were anemic.107 Anemia among 

pulmonary TB patients is thought to result from AI, as well as increased blood loss from 

hemoptysis (blood in sputum), decreased RBC production, and poor appetite and food 

intake, leading to poor nutrient status (of iron but also of other nutrients, including selenium 

in one study105).104 In Tanzania, the Gambia, and South Africa, AI was the primary cause of 

anemia in TB patients.108–110

Genetic HB disorders

Globally, 330,000 children are estimated to be born each year with a serious inherited Hb 

disorder (83% with sickle cell anemia or one of its variants; 17% with a form of 

thalassemia)31 and approximately 80% of these births occur in LMICs.111 Roughly, 5% of 

the global population is estimated to carry a significant Hb variant (e.g., a gene variant that 

can cause a serious disorder including sickle cell disease or a form of thalassemia); the 

percentage is much higher in Africa (18%) and Asia (7%).31 Sickle cell disorders (SCDs), 
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which are associated with chronic hemolytic anemia, are the most common genetic Hb 

disorder found predominantly in sub-Saharan Africa (where it is the most common genetic 

disorder), followed by β- and α-thalassemia, concentrated in Southeast Asia primarily.111 

Though not discussed in detail here, G6PD deficiency is one of the most common inherited 

enzyme abnormalities in humans, and its distribution tends to overlap with areas where 

malaria is endemic.112 In response to certain triggers—for example, ingestion of fava beans 

and exposure to the antimalarial primaquine—acute hemolytic anemia can result;112 G6PD 

deficiency is estimated to be within the top 35 causes of anemia globally.2 The proportion of 

anemia due to genetic Hb disorders—which are currently immutable causes of anemia—in 

LMICs is only expected to rise as other causes (e.g., nutritional deficiencies and infectious 

diseases) are better controlled. This requires increased understanding of the contribution of 

inherited blood disorders to anemia burden; a recent study from Malawi found that 60% of 

analyzed samples for inherited blood disorders (sickle cell, G6PD deficiency, and α-

thalassemia) among PSC in the Malawian Demographic and Health Survey had at least one 

abnormal result.113

Sickle cell disorders

In sickle cell disease, sickle-shaped RBCs—produced as a result of a defective β-globin 

chain—block small blood vessels, damage large blood vessels, cause severe pain and 

residual organ damage, and have a much-shortened life span, leading to chronic hemolytic 

anemia.31,114 Children with SCD have an increased risk of infections and malnutrition, 

which can have negative health repercussions, including painful episodes and increased 

hemolysis, which can lead to severe acute anemia.114

SCDs were the fifth and seventh top causes of anemia among females and males, 

respectively, in 2010.2 Though the sickle cell trait is most prevalent in Africa (where 11 per 

1000 conceptions are affected),31 sickle cell disease accounts for a higher proportion of 

cases in Western Europe, North America, and other high-income regions due to longer life 

expectancy in these countries, as well as few other causes.2

Thalassemias

Thalassemias are a group of inherited conditions in which there are defects in the synthesis 

of one or more of the globin chains that constitute Hb; α-thalassemia is caused by absent/

reduced synthesis of the α-globin chain, and β-thalassemia is caused by absent/reduced 

synthesis of the β-globin chain.115 This group of autosomal recessive disorders is 

characterized by hemolytic anemia and impaired erythropoiesis, among other complications 

depending on the severity of the gene defect, from carriers of the trait who are 

asymptomatic, to those who experience severe anemia, poor growth and skeletal 

abnormalities, and death (in the cases of α- or β-thalassemia major).115

Globally, approximately 1.7% of the world’s population is estimated to carry α- or β-

thalassemia trait (e.g., asymptomatic carriers), though within particular ethnic groups—α-

thalassemia is most common in individuals from Africa and Southeast Asia, while β-

thalassemia is most often found in individuals from the Mediterranean, Africa, and 

Southeast Asia—the rate can be between 5% and 30%.115 Thalassemias were estimated as 
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the sixth and ninth most prevalent causes of anemia globally among females and males, 

respectively, but were ranked more highly in Australasia, Central and Eastern Europe, 

Central and Southeast Asia, North Africa, and the Middle East.2

Potential directions for research

Despite advances in the understanding of anemia etiology, epidemiology, and 

pathophysiology, important research gaps remain. For example, studies to optimize the 

assessment of anemia using Hb (e.g., accuracy, cost-effectiveness, and defining thresholds 

that have physiologic and health significance) would improve the ability to assess anemia 

burden. Questions also remain on understanding the contribution of nutrition in the etiology 

of anemia, as well as nonnutritional causes, such as infections and environmental factors, 

and non-modifiable causes, such as inherited Hb disorders. A challenge for programs is 

determining how to implement anemia control programs that simultaneously address the 

context-specific causes of anemia. Without addressing these gaps in knowledge and 

implementation science, the global goals to reduce anemia burden are likely to fail.

Summary and conclusions

Anemia continues to be a widespread and significant global health problem that remains to 

be adequately addressed, particularly in LMICs where progress has been slow and uneven. 

Though ID remains a primary cause of anemia in most regions, recent work suggests that 

anemia etiology is complex and context specific. Efforts are needed to further understand 

how the principal causes of anemia, including ID and other nutritional deficiencies, disease, 

and Hb disorders, contribute to anemia so that appropriate interventions in specific settings 

can be implemented. This work will require including biochemical measures of 

micronutrient status (iron and VA primarily) and markers of inflammation, in addition to 

hematological indices when assessing anemia clinically and in populations.

Acknowledgments

This work was commissioned and financially supported by the Evidence and Programme Guidance Unit, 
Department of Nutrition for Health and Development of the World Health Organization (WHO), Geneva, 
Switzerland.

Disclosure

The findings and conclusions in this report are those of the authors and do not necessarily represent the official 
position of the Centers for Disease Control and Prevention.

References

1. World Health Organization. 2011 Haemoglobin concentrations for the diagnosis of anaemia and 
assessment of severity Accessed August 4, 2017 http://www.who.int/vmnis/indicators/
haemoglobin.pdf.

2. Kassebaum NJ, Jasrasaria R, Naghavi M, et al. 2014 A systematic analysis of global anemia burden 
from 1990 to 2010. Blood 123: 615–624. [PubMed: 24297872] 

3. Black RE, Victora CG, Walker SP, et al. 2013 Maternal and child undernutrition and overweight in 
low-income and middle-income countries. Lancet 382: 427–451. [PubMed: 23746772] 

Chaparro and Suchdev Page 15

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.who.int/vmnis/indicators/haemoglobin.pdf
http://www.who.int/vmnis/indicators/haemoglobin.pdf


4. Scott SP, Chen-Edinboro LP, Caulfield LE, et al. 2014 The impact of anemia on child mortality: an 
updated review. Nutrients 6: 5915–5932. [PubMed: 25533005] 

5. Haider BA, Olofin I, Wang M, et al. 2013 Anaemia, prenatal iron use, and risk of adverse pregnancy 
outcomes: systematic review and meta-analysis. BMJ 346: f3443. [PubMed: 23794316] 

6. Rasmussen K 2001 Is there a causal relationship between iron deficiency or iron-deficiency anemia 
and weight at birth, length of gestation and perinatal mortality? J. Nutr 131: 590S–603S. [PubMed: 
11160592] 

7. Haas JD & Brownlie T. 2001 Iron deficiency and reduced work capacity: a critical review of the 
research to determine a causal relationship. J. Nutr 131: 676S–688S; discussion 688S–690S. 
[PubMed: 11160598] 

8. Walker SP, Wachs TD, Meeks Gardner J, et al. 2007 Child development: risk factors for adverse 
outcomes in developing countries. Lancet 369: 145–157. [PubMed: 17223478] 

9. Stevens GA, Finucane MM, De-Regil LM, et al. 2013 Global, regional, and national trends in 
haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and 
non-pregnant women for 1995–2011: a systematic analysis of population-representative data. 
Lancet Glob. Health 1: e16–e25. [PubMed: 25103581] 

10. World Health Organization. 2015 The global prevalence of anaemia in 2011 Geneva: World Health 
Organization.

11. Suchdev PS, Namaste SM, Aaron GJ, et al. 2016 Overview of the Biomarkers Reflecting 
Inflammation and Nutritional Determinants of Anemia (BRINDA) Project. Adv. Nutr 7: 349–356. 
[PubMed: 26980818] 

12. Schreir SL 2018 Approach to the Adult Patient with Anemia Mentzer WC, Ed. Waltham, MA: 
UpToDate Inc.

13. Balarajan Y, Ramakrishnan U, Özaltin E, et al. 2011 Anaemia in low-income and middle-income 
countries. Lancet 378: 2123–2135. [PubMed: 21813172] 

14. Centers for Disease Control. 1989 CDC criteria for anemia in children and childbearing-aged 
women. MMWR Morb. Mortal. Wkly. Rep 38: 400–404. [PubMed: 2542755] 

15. World Health Organization. 2003 Pregnancy, childbirth, postpartum and newborn care: a guide for 
essential practice Geneva: World Health Organization.

16. World Health Organization. 2005 Handbook: IMCI integrated management of childhood illness 
Geneva: World Health Organization.

17. Chalco JP, Huicho L, Alamo C, et al. 2005 Accuracy of clinical pallor in the diagnosis of anaemia 
in children: a meta-analysis. BMC Pediatr 5: 46–46. [PubMed: 16336667] 

18. Dewey KG & Chaparro CM. 2007 Session 4: mineral metabolism and body composition iron 
status of breast-fed infants. Proc. Nutr. Soc 66: 412–422. [PubMed: 17637094] 

19. Jopling J, Henry E, Wiedmeier SE, et al. 2009 Reference ranges for hematocrit and blood 
hemoglobin concentration during the neonatal period: data from a multihospital health care 
system. Pediatrics 123: e333–e337. [PubMed: 19171584] 

20. Lynch S 2007 Indicators of iron status of populations: red blood cell parameters. In Assessing the 
Iron Status of Populations: Including Literature Reviews: Report of a Joint World Health 
Organization/Centers for Disease Control and Prevention Technical Consultation on the 
Assessment of Iron Status at the Population Level, Geneva Switzerland, 6–8 April 2004 2nd ed. 
Geneva: World Health Organization.

21. Nilsson-Ehle H, Jagenburg R, Landahl S, et al. 2000 Blood haemoglobin declines in the elderly: 
implications for reference intervals from age 70 to 88. Eur. J. Haematol 65: 297–305. [PubMed: 
11092459] 

22. Miller EM 2014 Iron status and reproduction in US women: National Health and Nutrition 
Examination Survey, 1999–2006. PLoS One 9: e112216. [PubMed: 25375360] 

23. Milman N, Clausen J & Byg KE. 1998 Iron status in 268 Danish women aged 18–30 years: 
influence of menstruation, contraceptive method, and iron supplementation. Ann. Hematol 77: 13–
19. [PubMed: 9760147] 

24. International Nutritional Anemia Consultative Group (INACG). 2002 Adjusting hemoglobin values 
in program surveys. INACG/USAID

Chaparro and Suchdev Page 16

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25. World Health Organization. 1968 Nutritional anaemias. Report of a WHO Scientific Group 
Geneva: World Health Organization.

26. United Nations Children’s Fund, United Nations University & World Health Organization. 2001 
Iron deficiency anaemia assessment, prevention, and control: a guide for programme managers 
Geneva: World Health Organization.

27. World Health Organization. 2000 The management of nutrition in major emergencies Geneva: 
WHO.

28. Beutler E & Waalen J. 2006 The definition of anemia: what is the lower limit of normal of the 
blood hemoglobin concentration? Blood 107: 1747–1750. [PubMed: 16189263] 

29. Johnson-Spear MA & Yip R. 1994 Hemoglobin difference between black and white women with 
comparable iron status: justification for race-specific anemia criteria. Am. J. Clin. Nutr 60: 117–
121. [PubMed: 8017324] 

30. Domellof M, Dewey KG, Lonnerdal B, et al. 2002 The diagnostic criteria for iron deficiency in 
infants should be reevaluated. J. Nutr 132: 3680–3686. [PubMed: 12468607] 

31. Modell B & Darlison M. 2008 Global epidemiology of haemoglobin disorders and derived service 
indicators. Bull. World Health Org 86: 480–487. [PubMed: 18568278] 

32. World Health Organization & Centers for Disease Control and Prevention. 2007 Assessing the iron 
status of populations: including literature reviews: report of a Joint World Health Organization/
Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron 
Status at the Population Level, Geneva, Switzerland, 6–8 April 2004 Geneva: World Health 
Organization and Centers for Disease Control and Prevention.

33. World Health Organization. 2016 Global Health Observatory data repository: prevalence of 
anaemia in women Accessed May 2, 2018 http://apps.who.int/gho/data/
view.main.GSWCAH28REG.

34. World Health Organization. 2016 Global Health Observatory data repository: anaemia in children 
<5 years by region Accessed May 2, 2018 http://apps.who.int/gho/data/
view.main.ANEMIACHILDRENv?lang=en.

35. Patel KV 2008 Epidemiology of anemia in older adults. Semin. Hematol 45: 210–217. [PubMed: 
18809090] 

36. World Health Organization. Global targets 2025 Accessed September 24, 2014 http://www.who.int/
nutrition/topics/nutrition_globaltargets2025/en/.

37. Figueiredo ACMG, Gomes-Filho IS, Silva RB, et al. 2018 Maternal anemia and low birth weight: a 
systematic review and meta-analysis. Nutrients 10: 601.

38. Rahman MM, Abe SK, Rahman MS, et al. 2016 Maternal anemia and risk of adverse birth and 
health outcomes in low- and middle-income countries: systematic review and meta-analysis. Am. 
J. Clin. Nutr 103: 495–504. [PubMed: 26739036] 

39. McCann JC & Ames BN. 2007 An overview of evidence for a causal relation between iron 
deficiency during development and deficits in cognitive or behavioral function. Am. J. Clin. Nutr 
85: 931–945. [PubMed: 17413089] 

40. Beard J 2003 Iron deficiency alters brain development and functioning. J. Nutr 133: 1468S–1472S. 
[PubMed: 12730445] 

41. Braunstein EM 2017 Etiology of anemia 2 2017. Accessed December 5, 2018 https://
www.merckmanuals.com/professional/hematology-and-oncology/approach-to-the-patient-with-
anemia/etiology-of-anemia.

42. Hoffmann JJ, Urrechaga E & Aguirre U. 2015 Discriminant indices for distinguishing thalassemia 
and iron deficiency in patients with microcytic anemia: a meta-analysis. Clin. Chem. Lab. Med 53: 
1883–1894. [PubMed: 26536581] 

43. Metz J 2008 A high prevalence of biochemical evidence of vitamin B12 or folate deficiency does 
not translate into a comparable prevalence of anemia. Food Nutr. Bull 29: S74–S85. [PubMed: 
18709883] 

44. Namaste SM, Aaron GJ, Varadhan R, et al. 2017 Methodological approach for the Biomarkers 
Reflecting Inflammation and Nutritional Determinants of Anaemia (BRINDA) project. Am. J. 
Clin. Nutr 106: 333S–347S. [PubMed: 28615254] 

Chaparro and Suchdev Page 17

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://apps.who.int/gho/data/view.main.GSWCAH28REG
http://apps.who.int/gho/data/view.main.GSWCAH28REG
http://apps.who.int/gho/data/view.main.ANEMIACHILDRENv?lang=en
http://apps.who.int/gho/data/view.main.ANEMIACHILDRENv?lang=en
http://www.who.int/nutrition/topics/nutrition_globaltargets2025/en/
http://www.who.int/nutrition/topics/nutrition_globaltargets2025/en/
https://www.merckmanuals.com/professional/hematology-and-oncology/approach-to-the-patient-with-anemia/etiology-of-anemia
https://www.merckmanuals.com/professional/hematology-and-oncology/approach-to-the-patient-with-anemia/etiology-of-anemia
https://www.merckmanuals.com/professional/hematology-and-oncology/approach-to-the-patient-with-anemia/etiology-of-anemia


45. Pasricha SR, Drakesmith H, Black J, et al. 2013 Control of iron deficiency anemia in low- and 
middle-income countries. Blood 121: 2607–2617. [PubMed: 23355536] 

46. Wirth JP, Woodruff BA, Engle-Stone R, et al. 2017 Predictors of anemia among women of 
reproductive age: Biomarkers Reflecting Inflammation and Nutrition Determinants of Anemia 
(BRINDA) project. Am. J. Clin. Nutr 106: 416S–427S. [PubMed: 28615262] 

47. Prieto-Patron A, Van der Horst K, Hutton ZV, et al. 2018 Association between anaemia in children 
6 to 23 months old and child, mother, household and feeding indicators. Nutrients 10: 1269.

48. Calis JC, Phiri KS, Faragher EB, et al. 2008 Severe anemia in Malawian children. N. Engl. J. Med 
358: 888–899. [PubMed: 18305266] 

49. Engle-Stone R, Aaron GJ, Huang J, et al. 2017 Predictors of anemia among preschool children: 
Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. 
Am. J. Clin. Nutr 106: 402S–415S. [PubMed: 28615260] 

50. Foote EM, Sullivan KM, Ruth LJ, et al. 2013 Determinants of anemia among preschool children in 
rural, western Kenya. Am. J. Trop. Med. Hyg 88: 757–764. [PubMed: 23382166] 

51. Thakur N, Chandra J, Pemde H, et al. 2014 Anemia in severe acute malnutrition. Nutrition 30: 
440–442. [PubMed: 24332525] 

52. Kassebaum N & GBD 2013 Anemia Collaborators. 2016 The global burden of anemia. Hematol. 
Oncol. Clin. North Am 30: 247–308. [PubMed: 27040955] 

53. Zariwala MG, Somavarapu S, Farnaud S, et al. 2013 Comparison study of oral iron preparations 
using a human intestinal model. Sci. Pharm 81: 1123–1139. [PubMed: 24482777] 

54. Wieringa FT, Dahl M, Chamnan C, et al. 2016 The high prevalence of anemia in Cambodian 
children and women cannot be satisfactorily explained by nutritional deficiencies or hemoglobin 
disorders. Nutrients 8: 348.

55. Fishman SM, Christian P & West KP. 2000 The role of vitamins in the prevention and control of 
anaemia. Public Health Nutr 3: 125–150. [PubMed: 10948381] 

56. Hacibekiroglu T, Basturk A, Akinci S, et al. 2015 Evaluation of serum levels of zinc, copper, and 
Helicobacter pylori IgG and IgA in iron deficiency anemia cases. Eur. Rev. Med. Pharmacol. Sci 
19: 4835–4840. [PubMed: 26744875] 

57. Olivares M, Hertramph E & Uauy R. 2007 Copper and zinc interactions in anemia: a public health 
perspective. In Nutritional Anemia Kraemer K & Zimmermann MB, Eds.: 99–110. Basel, 
Switzerland: Sight and Life Press.

58. Jafari SM, Heidari G, Nabipour I, et al. 2013 Serum retinol levels are positively correlated with 
hemoglobin concentrations, independent of iron homeostasis: a population-based study. Nutr. Res 
33: 279–285. [PubMed: 23602245] 

59. Bothwell TH, Charlton RW, Cook J, et al. 1980 Iron Metabolism in Man Oxford: Blackwell 
Scientific Publications.

60. Suchdev PS, Williams AM, Mei Z, et al. 2017 Assessment of iron status in settings of 
inflammation: challenges and potential approaches. Am. J. Clin. Nutr 106: 1626s–1633s. 
[PubMed: 29070567] 

61. Lynch S, Pfeiffer CM, Georgieff MK, et al. 2018 Biomarkers of Nutrition for Development 
(BOND)—iron review. J. Nutr 148: 1001s–1067s. [PubMed: 29878148] 

62. Stoltzfus RJ, Mullany LC & Black RE. 2004 Chapter 3: iron deficiency anaemia. In Comparative 
Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected 
Major Risk Factors Ezzati M, Lopez AD, Rodgers AA, et al., Eds.: 163–208. Geneva: World 
Health Organization.

63. Iglesias Vázquez L, Valera E, Villalobos M, et al. 2019 Prevalence of anemia in children from 
Latin America and the Caribbean and effectiveness of nutritional interventions: systematic review 
and meta-analysis. Nutrients 11: 183.

64. Petry N, Olofin I, Hurrell RF, et al. 2016 The proportion of anemia associated with iron deficiency 
in low, medium, and high human development index countries: a systematic analysis of national 
surveys. Nutrients 8: pii: E693. [PubMed: 27827838] 

65. World Health Organization. eLENA: e-library of evidence for nutrition actions Accessed October 
14, 2018 http://www.who.int/elena/en/.

Chaparro and Suchdev Page 18

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.who.int/elena/en/


66. World Health Organization. 2009 Global prevalence of vitamin A deficiency in populations at risk 
1995–2005 Geneva: WHO Global Database on Vitamin A Deficiency.

67. Semba RD & Bloem MW. 2002 The anemia of vitamin A deficiency: epidemiology and 
pathogenesis. Eur. J. Clin. Nutr 56: 271–281. [PubMed: 11965502] 

68. Michelazzo FB, Oliveira JM, Stefanello J, et al. 2013 The influence of vitamin A supplementation 
on iron status. Nutrients 5: 4399–4413. [PubMed: 24212089] 

69. Larson LM, Namaste SM, Williams AM, et al. 2017 Adjusting retinol-binding protein 
concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional 
Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr 106: 390s–401s. [PubMed: 
28615251] 

70. Kline M 2018 Rudolph’s Pediatrics 23rd ed. McGraw-Hill Education.

71. Allen LH 2008 Causes of vitamin B12 and folate deficiency. Food Nutr. Bull 29: S20–S34. 
[PubMed: 18709879] 

72. Green R, Allen LH, Bjorke-Monsen AL, et al. 2017 Vitamin B12 deficiency. Nat. Rev. Dis. 
Primers 3: 17040. [PubMed: 28660890] 

73. Chango A & Abdennebi-Najar L. 2011 Folate metabolism pathway and Plasmodium falciparum 
malaria infection in pregnancy. Nutr. Rev 69: 34–40. [PubMed: 21198633] 

74. McLean E, De Benoist B & Allen LH. 2008 Review of the magnitude of folate and vitamin B12 
deficiencies world-wide. Food Nutr. Bull 29: S38–S51. [PubMed: 18709880] 

75. Powers HJ 2003 Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr 77: 1352–1360. [PubMed: 
12791609] 

76. Rohner F, Zimmermann MB, Wegmueller R, et al. 2007 Mild riboflavin deficiency is highly 
prevalent in school-age children but does not increase risk for anaemia in Cote d’Ivoire. Br. J. Nutr 
97: 970–976. [PubMed: 17381972] 

77. Shi Z, Zhen S, Wittert GA, et al. 2014 Inadequate riboflavin intake and anemia risk in a Chinese 
population: five-year follow up of the Jiangsu Nutrition Study. PLoS One 9: e88862. [PubMed: 
24533156] 

78. Ehrhardt S, Burchard GD, Mantel C, et al. 2006 Malaria, anemia, and malnutrition in African 
children—defining intervention priorities. J. Infect. Dis 194: 108–114. [PubMed: 16741889] 

79. Magalhaes RJ & Clements AC. 2011 Mapping the risk of anaemia in preschool-age children: the 
contribution of malnutrition, malaria, and helminth infections in West Africa. PLoS Med 8: 
e1000438. [PubMed: 21687688] 

80. McCuskee S, Brickley EB, Wood A, et al. 2014 Malaria and macronutrient deficiency as correlates 
of anemia in young children: a systematic review of observational studies. Ann. Glob. Health 80: 
458–465. [PubMed: 25960095] 

81. World Health Organization. 2013 WHO conceptual framework on childhood stunting Accessed 
June 15, 2015 http://www.who.int/nutrition/events/
2013_ChildhoodStunting_colloquium_14Oct_ConceptualFramework_colour.pdf.

82. Tussing-Humphreys L, Pusatcioglu C, Nemeth E, et al. 2012 Rethinking iron regulation and 
assessment in iron deficiency, anemia of chronic disease, and obesity: introducing hepcidin. J. 
Acad. Nutr. Diet 112: 391–400. [PubMed: 22717199] 

83. Cepeda-Lopez AC, Aeberli I & Zimmermann MB. 2010 Does obesity increase risk for iron 
deficiency? A review of the literature and the potential mechanisms. Int. J. Vitam. Nutr. Res 80: 
263–270. [PubMed: 21462109] 

84. Weiss G & Goodnough LT. 2005 Anemia of chronic disease. N. Engl. J. Med 352: 1011–1023. 
[PubMed: 15758012] 

85. Nairz M, Theurl I, Wolf D, et al. 2016 Iron deficiency or anemia of inflammation?: differential 
diagnosis and mechanisms of anemia of inflammation. Wien. Med. Wochenschr 166: 411–423. 
[PubMed: 27557596] 

86. Nayak L, Gardner LB & Little JA. 2018 Chapter 37—anemia of chronic diseases. In Hematology 
7th ed. Hoffman R, Benz EJ, Silberstein LE, et al., Eds.: 491–496. Elsevier.

87. Wang CY & Babitt JL. 2016 Hepcidin regulation in the anemia of inflammation. Curr. Opin. 
Hematol 23: 189–197. [PubMed: 26886082] 

Chaparro and Suchdev Page 19

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.who.int/nutrition/events/2013_ChildhoodStunting_colloquium_14Oct_ConceptualFramework_colour.pdf
http://www.who.int/nutrition/events/2013_ChildhoodStunting_colloquium_14Oct_ConceptualFramework_colour.pdf


88. McCranor BJ, Langdon JM, Prince OD, et al. 2013 Investigation of the role of interleukin-6 and 
hepcidin antimicrobial peptide in the development of anemia with age. Haematologica 98: 1633–
1640. [PubMed: 23996485] 

89. Centers for Disease Control and Prevention. 2013 Parasites 1 10, 2013. Accessed June 12, 2017 
https://www.cdc.gov/parasites/sth/.

90. Smith JL & Brooker S. 2010 Impact of hookworm infection and deworming on anaemia in non-
pregnant populations: a systematic review. Trop. Med. Int. Health 15: 776–795. [PubMed: 
20500563] 

91. Albonico M, Stoltzfus RJ, Savioli L, et al. 1998 Epidemiological evidence for a differential effect 
of hookworm species, Ancylostoma duodenale or Necator americanus, on iron status of children. 
Int. J. Epidemiol 27: 530–537. [PubMed: 9698148] 

92. Ezeamama AE, McGarvey ST, Acosta LP, et al. 2008 The synergistic effect of concomitant 
schistosomiasis, hookworm, and trichuris infections on children’s anemia burden. PLoS Negl. 
Trop. Dis 2: e245. [PubMed: 18523547] 

93. Brooker S, Akhwale W, Pullan R, et al. 2007 Epidemiology of plasmodium-helminth co-infection 
in Africa: populations at risk, potential impact on anemia, and prospects for combining control. 
Am. J. Trop. Med. Hyg 77: 88–98. [PubMed: 18165479] 

94. Stoltzfus RJ, Chwaya HM, Montresor A, et al. 2000 Malaria, hookworms and recent fever are 
related to anemia and iron status indicators in 0- to 5-y old Zanzibari children and these 
relationships change with age. J. Nutr 130: 1724–1733. [PubMed: 10867043] 

95. The Global Network For Neglected Tropical Diseases. 2014 Schistosomiasis Accessed June 12, 
2017 http://www.globalnetwork.org/schistosomiasis.

96. Friedman JF, Kanzaria HK & McGarvey ST. 2005 Human schistosomiasis and anemia: the 
relationship and potential mechanisms. Trends Parasitol 21: 386–392. [PubMed: 15967725] 

97. World Health Organization. 2017 Malaria fact sheet 4 2017. Accessed July 6, 2017 http://
www.who.int/mediacentre/factsheets/fs094/en/.

98. Spottiswoode N, Duffy PE & Drakesmith H. 2014 Iron, anemia and hepcidin in malaria. Front. 
Pharmacol 5: 125. [PubMed: 24910614] 

99. White NJ 2018 Anaemia and malaria. Malar. J 17: 371. [PubMed: 30340592] 

100. Korenromp EL, Armstrong-Schellenberg JR, Williams BG, et al. 2004 Impact of malaria control 
on childhood anaemia in Africa—a quantitative review. Trop. Med. Int. Health 9: 1050–1065. 
[PubMed: 15482397] 

101. Redig AJ & Berliner N. 2013 Pathogenesis and clinical implications of HIV-related anemia in 
2013. Hematol. Am. Soc. Hematol. Educ. Program 2013: 377–381.

102. Minchella PA, Armitage AE, Darboe B, et al. 2015 Elevated hepcidin is part of a complex relation 
that links mortality with iron homeostasis and anemia in men and women with HIV infection. J. 
Nutr 145: 1194–1201. [PubMed: 25904736] 

103. Belperio PS & Rhew DC. 2004 Prevalence and outcomes of anemia in individuals with human 
immunodeficiency virus: a systematic review of the literature. Am. J. Med 116(Suppl. 7A): 27s–
43s. [PubMed: 15050884] 

104. Papathakis P & Piwoz E. 2008 Nutrition and Tuberculosis: A Review of the Literature and 
Considerations for TB Control Programs Washington, DC: Africa’s Health in 2010, Academy for 
Educational Development.

105. van Lettow M, West CE, van der Meer JW, et al. 2005 Low plasma selenium concentrations, high 
plasma human immunodeficiency virus load and high interleukin-6 concentrations are risk 
factors associated with anemia in adults presenting with pulmonary tuberculosis in Zomba 
district, Malawi. Eur. J. Clin. Nutr 59: 526–532. [PubMed: 15741985] 

106. Karyadi E, Schultink W, Nelwan RH, et al. 2000 Poor micronutrient status of active pulmonary 
tuberculosis patients in Indonesia. J. Nutr 130: 2953–2958. [PubMed: 11110853] 

107. Shah S, Whalen C, Kotler DP, et al. 2001 Severity of human immunodeficiency virus infection is 
associated with decreased phase angle, fat mass and body cell mass in adults with pulmonary 
tuberculosis infection in Uganda. J. Nutr 131: 2843–2847. [PubMed: 11694606] 

Chaparro and Suchdev Page 20

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cdc.gov/parasites/sth/
http://www.globalnetwork.org/schistosomiasis
http://www.who.int/mediacentre/factsheets/fs094/en/
http://www.who.int/mediacentre/factsheets/fs094/en/


108. Hella J, Cercamondi CI, Mhimbira F, et al. 2018 Anemia in tuberculosis cases and household 
controls from Tanzania: contribution of disease, coinfections, and the role of hepcidin. PLoS One 
13: e0195985. [PubMed: 29677205] 

109. Minchella PA, Donkor S, Owolabi O, et al. 2015 Complex anemia in tuberculosis: the need to 
consider causes and timing when designing interventions. Clin. Infect. Dis 60: 764–772. 
[PubMed: 25428413] 

110. Kerkhoff AD, Meintjes G, Opie J, et al. 2016 Anaemia in patients with HIV-associated TB: 
relative contributions of anaemia of chronic disease and iron deficiency. Int. J. Tuberc. Lung Dis 
20: 193–201. [PubMed: 26792471] 

111. Weatherall DJ 2010 The inherited diseases of hemoglobin are an emerging global health burden. 
Blood 115: 4331–4336. [PubMed: 20233970] 

112. Howes RE, Battle KE, Satyagraha AW, et al. 2013 G6PD deficiency: global distribution, genetic 
variants and primaquine therapy. Adv. Parasitol 81: 133–201. [PubMed: 23384623] 

113. McGann PT, Williams AM, Ellis G, et al. 2018 Prevalence of inherited blood disorders and 
associations with malaria and anemia in Malawian children. Blood Adv 2: 3035–3044. [PubMed: 
30425067] 

114. Ansong D, Akoto AO, Ocloo D, et al. 2013 Sickle cell disease: management options and 
challenges in developing countries. Mediterr. J. Hematol. Infect. Dis 5: e2013062. [PubMed: 
24363877] 

115. Muncie HL & Campbell JS. 2009 Alpha and beta thalassemia. Am. Fam. Physician 80: 339–344, 
371. [PubMed: 19678601] 

Chaparro and Suchdev Page 21

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Mean hemoglobin concentrations (and –2 SD values) by age and sex. Compiled from data 

from the United States, Europe, and Caucasian populations.18–21
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Figure 2. 
A conceptual model of anemia etiology. Determinants outlined with heavier borders are 

considered primary contributors to anemia globally. Adapted from Refs. 13,44, and 45.
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